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Our Charge 
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As you know, 
physical limitations 
are forcing an end 

to “Moore’s Law” … 
we must prepare for 

the significant 
changes ahead 

without wavering 
from our 

commitment to 
deliver exascale 

capability.   
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Our Charge (contd.) 
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By this letter, I am 
charging the ASCAC to 
form a subcommittee to 
review opportunities 
and challenges for 

future high 
performance 

computing capabilities.  
Specifically, we are 

looking for input from the 
community to determine 
areas of research and 

emerging technologies 
that need to be given 

priority. 
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Our Charge (contd.) 
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To inform ASCR 
planning, I would 

appreciate receiving 
the committee’s 

preliminary 
comments by the 

Summer 2017 
meeting, and a final 
report by December 

20, 2017.   
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Interpreting the Charge: Timeframe 

•  The charge did not specify a timeframe for the 
subcommittee to focus on ... 

•  ... however, it is clear that the charge refers to a 
post-exascale timeframe. 

•  The subcommittee concluded that it was 
appropriate to focus on different timeframes for 
different technologies, when identifying potential 
areas of research needed to support the Science 
mission. 
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Methodology 
•  Findings related to future HPC technologies 

•  Identify potential technology areas for future HPC systems 
•  Identify synergistic community activities in these technology 

areas (workshops, studies, white papers) 
•  Estimate timeframes for different levels of technology 

readiness for these technologies 
•  Create a framework for assessing the ability of applications to 

exploit different technologies 
•  Regular conference calls among subcommittee 

members to discuss findings and potential 
recommendations 

•  Conducted 13 conference calls thus far 
•  Preparation of preliminary comments (this 

presentation) 
•  Discussion with external experts beyond subcommittee 
•  Preparation of final report 
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Outline 

1. Our charge 
 
2. Post-Moore opportunities and 

challenges in Office of Science's 
mission 

 
3. Preliminary Recommendations  
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Dennard scaling ended in 2005 
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End of Moore’s Law 

A slow tapering off --- feature sizes will continue to diminish 
until 1nm in 2033, with monolithic 3D transistors expected 
from 2024 onwards 

11 

Table MM01 - More Moore - Logic Core Device Technology Roadmap
YEAR OF PRODUCTION 2017 2019 2021 2024 2027 2030 2033

P54M36 P48M28 P42M24 P36M21 P28M14G1 P26M14G2 P24M14G3
Logic industry "Node Range" Labeling (nm) "10" "7" "5" "3" "2.1" "1.5" "1.0"
IDM-Foundry node labeling i10-f7 i7-f5 i5-f3 i3-f2.1 i2.1-f1.5 i1.5-f1.0 i1.0-f0.7

Logic device structure options
finFET
FDSOI

finFET
LGAA

LGAA
VGAA

LGAA
VGAA

VGAA
M3D

VGAA
M3D

VGAA
M3D

Logic device mainstream device finFET finFET LGAA LGAA VGAA VGAA VGAA

Logic device technology naming

Patterning  technology inflection for Mx interconnect 193i 193i, EUV 193i, EUV 193i, EUV 193i, EUV 193i, EUV 193i, EUV
Channel material technology inflection Si SiGe25% SiGe50% Ge, IIIV (TFET) Ge, IIIV (TFET) Ge, IIIV (TFET) Ge, IIIV (TFET)

Process technogy inflection
Conformal 
deposition

Conformal 
Doping,
Contact

Channel, RMG CFET Seq. 3D Seq. 3D Seq. 3D

Stacking generation 2D 2D 2D
3D: W2W or D2W

3D: P-over-N 3D: SRAM-on-
Logic

3D: Logic-on-
Logic, Hetero

3D: Logic-on-
Logic, Hetero

Design-technology scaling factor for standard cell - 1.11 2.00 1.13 0.53 1.00 1.00
Design-technology scaling  factor for SRAM (111) bitcell 1.00 1.00 1.00 1.00 1.25 1.00 1.00
Number of stacked devices in one tier 1 1 3 4 1 1 1
Tier stacking scaling factor for SoC 1.00 1.00 1.00 1.00 1.80 1.80 1.80
Vdd (V) 0.75 0.70 0.65 0.60 0.50 0.45 0.40
Physical gate length for HP Logic (nm) 20.00 18.00 14.00 12.00 10.00 10.00 10.00
SoC footprint scaling  node-to-node - 50% digital, 35% SRAM, 15% analog+IO - 64.9% 51.3% 64.3% 64.2% 50.9% 50.7%

Gate

FD S OI

TBOX

Gate

FD S OI

TBOX

Source: IEEE IRDS 2017 Edition 
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Minimal performance improvement past node 5 
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Source: IEEE IRDS 2017 Edition 
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Levels of Disruption in Moore’s Law 
End-Game and Post-Moore eras 
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OUTLOOK

to scale computer performance. How-
ever, engineering software for the von 
Neumann architecture is itself a dif-
ficult endeavor. Adding the need for 
explicit programming of parallelism 
is largely untenable to the software 
industry as a whole. Thus, the solution 
has been successful for HPC, a realm 
in which software rewriting is consid-
ered an acceptable investment, and the 
result has been computer performance 
increases only for select applications.

Reaching the power wall has impli-
cations for more than the PC industry. 
The PC–microprocessor ecosystem has 
driven down the cost of mainstream 
processors to an attractively low price 
fostered by the continual increase in 
logic IC volume. Consequently, these 
microprocessors and other ecosys-
tem elements have migrated upward, 
affecting much more complex systems 
such as high-performance computers .

PROPOSED WAYS FORWARD
Attendees at the RCI’s four past sum-
mits reached consensus on the idea 

that any solutions to extending com-
puting performance and efficiency 
would have to radically depart from 
the straightforward interpretation of 
Moore’s law. As a 2015 IEEE Spectrum 
article put it,5

Today’s technology makes a 
1-exaflops supercomputer capable 
of performing 1 million trillion 
floating-point operations per 
second almost inevitable. But 
pushing supercomputing beyond 
that point to 10 exaflops or more 
will require major changes in 
both computing technologies 
and computer architectures.

To address that requirement, the RCI 
meetings covered a range of solutions 
to the impending end of current com-
puting paradigms, which can be char-
acterized in terms of disruption to the 
computing stack, as Figure 2 shows.

Non−von Neumann computing
The most radical approaches rethink 

computing from the ground up, and 
will require new algorithms, lan-
guages, and so on. Chief among these 
is quantum computing, which uses 
properties of quantum mechanics 
to solve problems in optimization, 
search, and whole number theory. 
Although a quantum computer can 
be used as a universal computing plat-
form, it will be no better than a con-
ventional computer outside a limited 
set of problems. However, the quan-
tum computer’s advantage is so large 
for some of those problems that it has 
the potential to shake the foundation 
of conventional scientific, engineer-
ing, business, and security practices. 
For example, a working quantum com-
puter could factor the product of two 
large primes in a nanosecond,6 which 
undermines asymmetric-key encryp-
tion. This encryption standard, which 
is central to every facet of  e-commerce 
and national security, is based on the 
notion that such factoring is computa-
tionally intractable.

Another non−von Neumann ap-
proach is neuromorphic computing, 
which leverages what is known about 
the human brain’s operation to create 
new computing technologies. Neuro-
morphic computers do not attempt to 
replicate the brain, but rather draw 
from the neuroscientific aspects that 
enable humans to solve problems with 
great efficiency, such as recognizing 
and classifying patterns in text, au-
dio, or images. Neuromorphic com-
puters can be simulated on modern 
computers, but the true energy effi-
ciencies come from specialized hard-
ware built specifically for the task.

Neuromorphic algorithms differ 
greatly from traditional algorithms 
and overlap the important discipline 
of machine learning. The indus-
try can now simulate neuromorphic 

Algorithm

Language

API

Architecture

Instruction-set
architecture

Microarchitecture

Function unit

Logic

Device More “Moore”

1

No disruption Total disruption

2 3 4

Hidden
changes

Architectural
changes

Non–
von Neumann

computing

FIGURE 2. Four future computing approaches and the extent to which they disrupt the 
traditional computing stack (left). At the far right (level 4) are non−von Neumann archi-
tectures, which completely disrupt all stack levels, from device to algorithm. At the least 
disruptive end (level 1) are more “Moore” approaches, such as new transistor technology 
and 3D circuits, which affect only the device and logic levels. Hidden changes are those of 
which the programmer is unaware.

Source: “Rebooting Computing: The Road Ahead”, T.M.Conte, E.P.DeBenedictis, 
P.A.Gargini, E.Track, IEEE Computer, 2017.   

At the far right (level 4) are 
non−von Neumann 
architectures, which 
completely disrupt all stack 
levels, from device to 
algorithm. 
At the least disruptive end 
(level 1) are more “Moore” 
approaches, such as new 
transistor technology and 
3D circuits, which affect 
only the device and logic 
levels. 
Hidden changes are those 
of which the programmer is 
unaware. 
Our subcommittee is 
focusing on level 3 & 4 
approaches. 
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Taxonomy of Future HPC technologies 
being considered by our subcommittee 

(In order of increasing levels of disruption) 
•  Von Neumann approaches with specialized computing 

•  GPU accelerators 
•  Reconfigurable logic 
•  CPU-integrated accelerators  

•  Memory-centric computing 
•  Photonics 
•  Non-Von Neumann approaches 

•  Neuromorphic computing 
•  Analog computing 
•  Quantum computing 
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Common themes: extreme heterogeneity, 
specialization, hybrid systems 
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Extreme Heterogeneity  Workshop

– POC: Lucy Nowell(Lucy.Nowell@science.doe.gov)
– Goal: Identify Priority Research Directions for 

Computer Science needed to make future 
supercomputers usable, useful and secure for science 
applications in the 2025-2035 timeframe

– Primary focus on the software stack and programming 
models/environments

– 120 expected participants: DOE Labs, academia, & 
industry

– Observers from  DOE and other federal agencies
– Planning: Factual Status Document (FSD) is under 

development, with outreach planned.
• White papers to be solicited to contribute to the 

FSD, identify potential participants, and help 
refine the agenda

• Report due early May 2018

46ASCAC Presentation 9/26/2017

CP
U

Digital

G
PU

FP
G

A

System Software
OS, Runtime

Q
ua

nt
um

N
eu

ro
m

or
ph

ic

O
th

er
s

Compilers, Libraries, Debuggers

Applications

Non-Digital

Tentatively planned for Jan. 23-25, 2018, in D.C. area.

Heterogeneous Memories 

Heterogeneous Interconnects 

Figure source: presentation 
on “Advanced Scientific 
Computing Research”, 
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meeting, Sep 2017. 
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Community investigation of future technologies 
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•  Several recent DOE workshops and reports have 
focused on future HPC technologies 

  

. . . 
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Technology Readiness Levels (TRLs) 
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Source: U.S. DEPARTMENT OF ENERGY Technology Readiness Assessment Guide, 
DOE G 413.3-4 10-12-09 

10 DOE G 413.3-4 
 10-12-09 
 

Relative Level 
of Technology 
Development 

Technology 
Readiness 

Level 
TRL Definition Description 

 
TRL 4  

 
Component 
and/or system 
validation in 
laboratory 
environment  

 

The basic technological components are integrated to establish that the 
pieces will work together. This is relatively "low fidelity" compared 
with the eventual system. Examples include integration of ad hoc 
hardware in a laboratory and testing with a range of simulants and 

small scale tests on actual waste
2
. Supporting information includes the 

results of the integrated experiments and estimates of how the 
experimental components and experimental test results differ from the 
expected system performance goals. TRL 4-6 represent the bridge 
from scientific research to engineering. TRL 4 is the first step in 
determining whether the individual components will work together as 
a system. The laboratory system will probably be a mix of on hand 
equipment and a few special purpose components that may require 
special handling, calibration, or alignment to get them to function.  

Research to 
Prove 
Feasibility  

TRL 3  Analytical and 
experimental 
critical function 
and/or 
characteristic 
proof of concept  

Active research and development (R&D) is initiated. This includes 
analytical studies and laboratory-scale studies to physically validate 
the analytical predictions of separate elements of the technology. 
Examples include components that are not yet integrated or 

representative tested with simulants.
1 
Supporting information includes 

results of laboratory tests performed to measure parameters of interest 
and comparison to analytical predictions for critical subsystems. At 
TRL 3 the work has moved beyond the paper phase to experimental 
work that verifies that the concept works as expected on simulants. 
Components of the technology are validated, but there is no attempt to 
integrate the components into a complete system. Modeling and 
simulation may be used to complement physical experiments.  

TRL 2  Technology 
concept and/or 
application 
formulated  

Once basic principles are observed, practical applications can be 
invented. Applications are speculative, and there may be no proof or 
detailed analysis to support the assumptions. Examples are still 
limited to analytic studies.  

Supporting information includes publications or other references that 
outline the application being considered and that provide analysis to 
support the concept. The step up from TRL 1 to TRL 2 moves the 
ideas from pure to applied research. Most of the work is analytical or 
paper studies with the emphasis on understanding the science better. 
Experimental work is designed to corroborate the basic scientific 
observations made during TRL 1 work.  

Basic 
Technology 
Research  

TRL 1  Basic principles 
observed and 
reported  

This is the lowest level of technology readiness. Scientific research 
begins to be translated into applied R&D. Examples might include 
paper studies of a technology’s basic properties or experimental work 
that consists mainly of observations of the physical world. Supporting 
Information includes published research or other references that 
identify the principles that underlie the technology.  

1 Simulants should match relevant chemical and physical properties 
2 Testing with as wide a range of actual waste as practicable and consistent with waste availability, safety, ALARA, cost and project risk is highly 

desirable.  

DOE G 413.3-4 9 
10-12-09  
 

 

Table 1. Technology Readiness Levels 

Relative Level 
of Technology 
Development 

Technology 
Readiness 

Level 
TRL Definition Description 

System 
Operations  

TRL 9  Actual system 
operated over 
the full range of 
expected 
conditions.  

The technology is in its final form and operated under the full range of 
operating conditions. Examples include using the actual system with 
the full range of wastes in hot operations.  

System 
Commissioning  

TRL 8  Actual system 
completed and 
qualified 
through test and 
demonstration.  

The technology has been proven to work in its final form and under 
expected conditions. In almost all cases, this TRL represents the end 
of true system development. Examples include developmental testing 
and evaluation of the system with actual waste in hot commissioning. 
Supporting information includes operational procedures that are 
virtually complete. An Operational Readiness Review (ORR) has been 
successfully completed prior to the start of hot testing.  

TRL 7  Full-scale, 
similar 
(prototypical) 
system 
demonstrated in 
relevant 
environment  

This represents a major step up from TRL 6, requiring demonstration 
of an actual system prototype in a relevant environment. Examples 
include testing full-scale prototype in the field with a range of 

simulants in cold commissioning
1
. Supporting information includes 

results from the full-scale testing and analysis of the differences 
between the test environment, and analysis of what the experimental 
results mean for the eventual operating system/environment. Final 
design is virtually complete.  

Technology 
Demonstration  

TRL 6  Engineering/pil
ot-scale, similar 
(prototypical) 
system 
validation in 
relevant 
environment  

Engineering-scale models or prototypes are tested in a relevant 
environment. This represents a major step up in a technology’s 
demonstrated readiness. Examples include testing an engineering 

scale prototypical system with a range of simulants.
1 
Supporting 

information includes results from the engineering scale testing and 
analysis of the differences between the engineering scale, prototypical 
system/environment, and analysis of what the experimental results 
mean for the eventual operating system/environment. TRL 6 begins 
true engineering development of the technology as an operational 
system. The major difference between TRL 5 and 6 is the step up 
from laboratory scale to engineering scale and the determination of 
scaling factors that will enable design of the operating system. The 
prototype should be capable of performing all the functions that will 
be required of the operational system. The operating environment for 
the testing should closely represent the actual operating environment.  

TRL 5  Laboratory 
scale, similar 
system 
validation in 
relevant 
environment  

The basic technological components are integrated so that the system 
configuration is similar to (matches) the final application in almost all 
respects. Examples include testing a high-fidelity, laboratory scale 

system in a simulated environment with a range of simulants
1 
and 

actual waste
2
. Supporting information includes results from the 

laboratory scale testing, analysis of the differences between the 
laboratory and eventual operating system/environment, and analysis 
of what the experimental results mean for the eventual operating 
system/environment. The major difference between TRL 4 and 5 is 
the increase in the fidelity of the system and environment to the actual 
application. The system tested is almost prototypical.  

Technology 
Development  
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Reconfigurable Logic 
Approach:  

•  For best performance, FPGA kernels are written in Hardware Description Languages 
(HDLs), which requires significant hardware expertise and development effort 

•  High Level Synthesis (HLS) of C, C++, or OpenCL continues to improve, but, unlike 
the use of HDL, HLS performance gain is still only comparable to that of GPUs 

Current & Future Promise:  
•  Improved energy efficiency & memory bandwidth utilization relative to CPUs/GPUs 

Motivating Applications: 
•  Bioinformatics, signal processing, image processing, network packet processing 
•  Early adoption in data analysis and in-transit processing areas: use of FPGAs to 

compress, clean, filter data streams generated by scientific instruments 
Timeframe: 

•  FPGA accelerators are already available now (even as cloud services!), and closer 
integration of CPU with reconfigurable logic is expected in 2-5 years 

Key challenges: 
•  Lack of design tools that simplify application development remains a major obstacle, 

as does compile cycles (synthesis, map, place, route) that can take hours to days 
 

18 



ASCAC	  

FPGAs now available as Amazon EC2 F1 
instances 

19 

Source: https://aws.amazon.com/ec2/instance-types/f1/  

How it Works

DEVELOP

Develop custom

Amazon FPGA Images

(AFI) using the Hardware

Development Kit (HDK)

and full set of design

tools and simulators. 

DEPLOY

Deploy your AFI directly

on F1 instances and

take advantage of all the

scalability, agility, and

security benefits of EC2. 

OFFER

Offer AFIs you design on

the AWS Marketplace

for other customers. 

PURCHASE

Purchase AFIs built and

listed on AWS

Marketplace to quickly

implement common

hardware accelerations. 
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Range of Approaches for Memory-Centric 
Processing 
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Memory-Centric Processing 
Approach:  

•  Memory-Centric Processing places computation closer to memory than conventional 
cores.  These approaches are being explored at the in situ, sense amps, memory 
bank, on-memory, and near-memory levels. 

Current & Future Promise:  
•  Reduce memory bandwidth bottlenecks by performing lightweight specialized 

operations close to memory.  Additional benefits include reduced latency, reduced 
energy of transport, faster atomic operations, and higher levels of concurrency. 

Motivating applications:  
•  Applications with memory–centric streaming operations, e.g., encryption/decryption, 

search, big data, big graphs, deep learning 

Timeframe: 
•  Above approaches demonstrated at the research level.  Near-Memory Processing 

appears to be the most viable for the next level, due to its synergy with 3D stacking. 
Key challenges: 

•  How to maintain some level of coherence/consistency across data copies, how to 
support remote computations and a global address space, how to recognize 
completion of asynchronous operations, how to handle cases where data from 
separate memories need to be combined. 

21 



ASCAC	  

Photonics 
•  Silicon Photonics has emerged as platform for large 

scale integration of complex electronic-photonic ICs 
•  Enabling system scale CMOS-photonics 
•  AIM Photonics - Integrated Photonics Manufacturing 

Institute – state-of-art US facility (Albany) with 
300mm tools for fabrication, 3D stacking with CMOS 

•  Challenges:  
•  Bridging photonics with computing systems  
•  Physical layer/control/programmability 
•  New computation models and architectures 

22 

300mm SiP wafer 
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Future directions for Photonics (example) 
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Deep learning with coherent nanophotonic circuits
Yichen Shen1*†, Nicholas C. Harris1*†, Scott Skirlo1, Mihika Prabhu1, Tom Baehr-Jones2,
Michael Hochberg2, Xin Sun3, Shijie Zhao4, Hugo Larochelle5, Dirk Englund1 and Marin Soljačić1

Artificial neural networks are computational network models inspired by signal processing in the brain. These models have
dramatically improved performance for many machine-learning tasks, including speech and image recognition. However,
today’s computing hardware is inefficient at implementing neural networks, in large part because much of it was designed
for von Neumann computing schemes. Significant effort has been made towards developing electronic architectures tuned
to implement artificial neural networks that exhibit improved computational speed and accuracy. Here, we propose a new
architecture for a fully optical neural network that, in principle, could offer an enhancement in computational speed and
power efficiency over state-of-the-art electronics for conventional inference tasks. We experimentally demonstrate the
essential part of the concept using a programmable nanophotonic processor featuring a cascaded array of 56 programmable
Mach–Zehnder interferometers in a silicon photonic integrated circuit and show its utility for vowel recognition.

Computers that can learn, combine and analyse vast amounts
of information quickly, efficiently and without the need for
explicit instructions are emerging as a powerful tool for hand-

ling large data sets. ‘Deep learning’ algorithms have received an
explosion of interest in both academia and industry for their
utility in image recognition, language translation, decision-making
problems and more1–4. Traditional central processing units
(CPUs) are suboptimal for implementing these algorithms5, and a
growing effort in academia and industry has been directed
towards the development of new hardware architectures tailored
to applications in artificial neural networks (ANNs) and deep learn-
ing6. Graphical processing units (GPUs), application-specific inte-
grated circuits (ASICs) and field-programmable gate arrays
(FPGAs)2,5,7–11, including IBM TrueNorth5 and Google TPU11,
have improved both energy efficiency and speed enhancement for
learning tasks. In parallel, hybrid optical–electronic systems that
implement spike processing12–14 and reservoir computing15–18 have
been demonstrated.

Fully optical neural networks (ONNs) offer a promising alterna-
tive approach to microelectronic and hybrid optical–electronic
implementations. ANNs are a promising fully optical computing
paradigm for several reasons. (1) They rely heavily on fixed
matrix multiplications. Linear transformations (and certain non-
linear transformations) can be performed at the speed of light and
detected at rates exceeding 100 GHz (ref. 19) in photonic networks
and, in some cases, with minimal power consumption20,21. For
example, it is well known that a common lens performs a Fourier
transform without any power consumption and that certain
matrix operations can also be performed optically without consum-
ing power. (2) They have weak requirements on nonlinearities.
Indeed, many inherent optical nonlinearities can be directly used
to implement nonlinear operations in ONNs. (3) Once a neural
network is trained, the architecture can be passive, and computation
on the optical signals will be performed without additional energy
input. These features could enable ONNs that are substantially
more energy-efficient and faster than their electronic counterparts.
However, implementing such transformations with bulk optical
components (such as fibres and lenses) has been a major barrier

so far because of the need for phase stability and large neuron
counts22. Integrated photonics addresses this problem by providing
a scalable solution to large, phase-stable optical transformations23.

Here, we begin with a theoretical proposal for a fully optical
architecture for implementing general deep neural network algor-
ithms using nanophotonic circuits that process coherent light.
The speed and power efficiency of our proposed architecture is
largely enabled by coherent, fully optical matrix multiplication
(a cornerstone of neural network algorithms). Under the assump-
tion of practical, centimetre-scale silicon photonic die sizes and
low waveguide losses, we estimate that such an ONN would
enable forward propagation that is at least two orders of magnitude
faster than state-of-the-art electronic or hybrid optical–electronic
systems, and with a power consumption that is nearly proportional
(instead of quadratic, as in electronics) to the number of neurons
(for more details see the discussion about scaling in the Methods).
Next, we experimentally demonstrate the essential component of
our scheme by embedding our proposed optical interference unit
(OIU) and diagonal matrix multiplication unit within a subset of
the programmable nanophotonic processor (PNP), a photonic inte-
grated circuit developed for applications in quantum information pro-
cessing23. To test the practical performance of our theoretical
proposal, we benchmarked the PNP on a vowel recognition
problem, which achieved an accuracy comparable to a conventional
64-bit computer using a fully connected neural network algorithm.

ONN device architecture
An ANN1 consists of a set of input artificial neurons (represented
as circles in Fig. 1a) connected to at least one hidden layer and
the output layer. In each layer (depicted in Fig. 1b), information
propagates by a linear combination (for example, matrix multi-
plication) followed by the application of a nonlinear activation
function. ANNs can be trained by feeding training data into the
input layer and then computing the output by forward propa-
gation; matrix entries (weights) are subsequently optimized using
back propagation24.

The ONN architecture is depicted in Fig. 1b,c. As shown in
Fig. 1c, the task (an image, a vowel or a sentence to be recognized)

1Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 2Elenion, 171 Madison Avenue, Suite
1100, New York, New York 10016, USA. 3Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA.
4Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 5Université de Sherbrooke, Administration, 2500
Boulevard de l’Université, Sherbrooke, Quebec J1K 2R1, Canada. †These authors contributed equally to this work. *e-mail: ycshen@mit.edu; n_h@mit.edu
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© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.

is first preprocessed to a high-dimensional vector on a computer
with a standard algorithm (this step is computationally inexpensive
compared with inference). The preprocessed signals are then
encoded in the amplitude of optical pulses propagating in the
photonic integrated circuit, which implements a many-layer
ONN. Each layer of the ONN is composed of an OIU that
implements optical matrix multiplication and an optical nonlinear-
ity unit (ONU) that implements the nonlinear activation. In prin-
ciple, the ONN can implement an ANN of arbitrary depth and
dimensions fully in the optical domain.

To realize an OIU that can implement any real-valued matrix, we
first note that a general, real-valued matrix (M) may be decomposed
asM=UΣV† through singular value decomposition (SVD)25, where
U is an m ×m unitary matrix, Σ is an m × n rectangular diagonal
matrix with non-negative real numbers on the diagonal and V† is
the complex conjugate of the n × n unitary matrix V. It has been
shown theoretically that any unitary transformations U,V† can be
implemented with optical beamsplitters and phase shifters26,27.
Finally, Σ can be implemented using optical attenuators—optical
amplification materials such as semiconductors or dyes could also
be used28. Matrix multiplication with unitary matrices implemented
in the manner above consumes, in principle, no power. The fact that
a major proportion of ANN calculations involve matrix products
enables the extreme energy efficiency of the ONN architecture
presented here.

The ONU can be implemented using common optical non-
linearities such as saturable absorption29–31 and bistability32–36,
which have all been demonstrated previously in photonic circuits.
For an input intensity Iin, the optical output intensity is given by
a nonlinear function Iout = f(Iin)37. In this Article, we will consider
an f that models the mathematical function associated with a
realistic saturable absorber (such as a dye, semiconductor or
graphene saturable absorber or saturable amplifier) that could, in
future implementations, be directly integrated into waveguides
after each OIU stage of the circuit. For example, graphene layers
integrated on nanophotonic waveguides have already been

demonstrated as saturable absorbers38. Saturable absorption is mod-
elled as29 (Supplementary Section 2)

στsI0 =
1
2
ln (Tm/T0)
1 − Tm

(1)

where σ is the absorption cross-section, τs is the radiative lifetime of
the absorber material, T0 is the initial transmittance (a constant that
only depends on the design of the saturable absorbers), I0 is the inci-
dent intensity and Tm is the transmittance of the absorber. Given an
input intensity I0, one can solve for Tm(I0) from equation (1) and
the output intensity can be calculated as Iout = I0·Tm(I0). A plot of
the saturable absorber’s response function Iout(Iin) is shown in
Supplementary Section 2.

A schematic diagram of the proposed fully optical neural
network is shown in Fig. 1d.

Experiment
We evaluated the practicality of our proposal by experimentally
implementing a two-layer neural network trained for vowel recog-
nition. To prepare the training and testing data sets, we used 360
data points, each consisting of four log area ratio coefficients39 of
one phoneme. The log area ratio coefficients, or feature vectors, rep-
resent the power contained in different logarithmically spaced fre-
quency bands and are derived by computing the Fourier
transform of the voice signal multiplied by a Hamming window
function. The 360 data points were generated by 90 different
people speaking four different vowel phonemes40. We used half of
these data points for training and the remaining half to test the per-
formance of the trained ONN. We trained the matrix parameters
used in the ONN with the standard back-propagation algorithm
using a stochastic gradient descent method41 on a conventional
computer. Further details on the data set and back-propagation pro-
cedure are included in Supplementary Section 3.

The OIU was implemented using a PNP23—a silicon photonic
integrated circuit fabricated in the OPSIS foundry42. This was
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Figure 1 | General architecture of the ONN. a, General artificial neural network architecture composed of an input layer, a number of hidden layers and an
output layer. b, Decomposition of the general neural network into individual layers. c, Optical interference and nonlinearity units that compose each layer of
the artificial neural network. d, Proposal for an all-optical, fully integrated neural network.
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Neuromorphic Computing 
Approach:  

•   Emulate the  behavior of a  subset of the  brain, e.g., via algorithms that simulate spiking  neurons 
and can be used as modeling  tools by neuroscientists 

•  Use artificial  neural  networks to achieve brain-like  functionality, such  as object or speech  
recognition e.g., via deep neural networks. 

Current & future promise:  
•  Initial  excitement in  the  1950s with  the  Perceptron, followed by Multi-Layer Perceptrons in  the  

1980s/1990s. However, these were outperformed  by running algorithms such  as Support Vector 
Machines (SVMs) on stock hardware from those periods.  

•  Current hardware (notably GPUs) has made it possible for Deep Neural Networks to achieve 
human-level  performance  for non-trivial  tasks such  as object recognition & speech  recognition. 

•  Learning now emerging as third pillar of computational science (in addition to simulation & data) 

Motivating applications:  
•  Modeling  tools for neuroscientists, deep learning for science, numerous commercial applications 

Timeframe: 
•  Current implementations include Google’s TPUs and IBM’s True North hardware, as well as 

efficient implementations of DNNs in GPUs and FPGAs 
•  Going  forward, we  can  expect neuromorphic computing  to  be  used broadly, across data  centers 

and embedded platforms (e.g., self-driving cars).  Many companies are  expected  to  propose  and 
develop ASICs with efficient support for neuromorphic computing. 

24 
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Neuromorphic Computing is already 
receiving a lot of attention in DOE activities 

25 

Figure source: “Report of a Roundtable Convened to Consider Neuromorphic 
Computing Basic Research Needs”, October 2015, Gaithersburg, MD 

Neuromorphic+Computing:+From+Materials+to+Systems+Architecture+
!

8+

+von+Neumann+Architecture+ + ++++++++++Neuromorphic+Architecture+
+

+++++++++++ +
+
Figure+1.!Comparison+of+high`level+ conventional+ and+neuromorphic+ computer+architectures.! The! so<
called!“von!Neumann!bottleneck”!is!the!data!path!between!the!CPU!and!the!memory!unit.!In!contrast,!a!neural!
network!based!architecture!combines!synapses!and!neurons!into!a!fine!grain!distributed!structure!that!scales!
both!memory!(synapse)!and!compute!(soma)!elements!as!the!systems!increase!in!scale!and!capability,!thus!
avoiding!the!bottleneck!between!computing!and!memory.!!

Device!Level!
!
A!major!difference!is!also!present!at!the!device!level!(see!Figure!2).!Classical!von!Neumann!
computing! is! based! on! transistors,! resistors,! capacitors,! inductors! and! communication!
connections! as! the! basic! devices.! While! these! conventional! devices! have! some! unique!
characteristics!(e.g.,!speed,!size,!operation!range),!they!are!limited!in!other!crucial!aspects!
(e.g.,! energy! consumption,! rigid! design! and! functionality,! inability! to! tolerate! faults,! and!
limited!connectivity).!In!contrast,!the!brain!is!based!on!large!collections!of!neurons,!each!of!
which! has! a! body! (soma),! synapses,! axon,! and! dendrites! that! are! adaptable! and! fault!
tolerant.! Also,! the! connectivity! between! the! various! elements! in! the! brain! is!much!more!
complex!than!in!a!conventional!computational!circuit!(see!Figure!2).!
!! ! !
a)+ + + + + + b)+
!

!!!!!!!!! ! ! !
!!
Figure+2.!Interconnectivity+in+a)+conventional+and+b)+neuronal+circuits.!
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Overview of Electronic Analog Computing 
from the past 

26 

Source: https://en.wikipedia.org/wiki/Analog_computer#Electronic_analog_computers 

•  Analog computers are especially well-suited to representing situations 
described by differential equations. Occasionally, they were used when a 
differential equation proved very difficult to solve by traditional means. 

•  The similarity between linear mechanical components, such as springs and 
dashpots (viscous-fluid dampers), and electrical components, such as 
capacitors, inductors, and resistors is striking in terms of mathematics. They 
can be modeled using equations of the same form. 

•  The electrical system is an analogy to the physical system, hence the name, 
but it is less expensive to construct, generally safer, and typically much 
easier to modify.  As well, an electronic circuit can typically operate at higher 
frequencies than the system being simulated. This allows the simulation to 
run faster than real time (which could, in some instances, be hours, weeks, 
or longer).  

•  Electronics are limited by the range over which the variables may vary. 
Floating-point digital calculations have a comparatively huge dynamic range. 
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EAI PACE TR-48 analog computer (1962) 
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Source: http://www.computerhistory.org/revolution/analog-computers/3/152/430 

EAI was the largest supplier of general-purpose analog computers. 
Transistorized models like the TR-48 were used for satellite design, 
chemotherapy studies, chemical reactor simulation, and more. 
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Analog Computing 
Approach:  

•  Mapping dynamical systems to analogous systems, where the latter is typically 
electronic, optical or electro-chemical systems. 

•  Exploit dynamical systems that have similar physics relationships to the system being 
simulated/modeled. 

Current & future promise:  
•  Improved computational efficiency vs. traditional digital simulation/search.  In some 

cases, orders of magnitude lower power than digital approaches. 
Motivating applications: 

•  Physical system simulation, solving differential equations, near-optimal search 
(annealing). 

Timeframe: 
•  Analog computing has a long history, but the success of digital computing has pushed 

it to the sidelines.  New investments coupled with device/dynamical-process modeling 
has strong potential in a 10 year timeframe. 

Key challenges: 
•  Effective bit precision of computation as a function of SNR is limited today, software 

support for (re-)configuration largely absent, and manufacturing of devices with useful 
dynamical behaviors is currently not an industry priority. 

 28 
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Quantum Computing is already receiving a lot 
of attention in DOE activities 

29 
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Quantum Computing Applications for SC Grand Challenges 

Simulation of quantum many body 
systems for materials discovery,
chemical processes, and nuclear 

matter equation of state 

Simulations of 
quantum field theory 

and quantum 
dynamics

Machine learning for 
large data sets and 
inverse molecular 

design 

Transformative Impact Through Partnership Programs among ASCR, BER, BES, HEP, NP (QATs and QCATs)

Optimization for prediction of 
biological systems such as 

protein folding  

Quantum Computing Focus Areas

QIS Task Force identified SC-wide grand challenges that will potentially be transformed by 
quantum computing applications.   

Quantum Testbeds

Co-Design

ASCAC Presentation 9/26/2017

Figure source: 
presentation on 
“Advanced Scientific 
Computing 
Research”, Barbara 
Helland, ASCAC 
meeting, Sep 2017. 
Also included 
updates on 
“Quantum Algorithm 
Teams (QATs)” and 
“Quantum Testbed 
Pathfinder” 
programs. 



ASCAC	  

Quantum Computing 
Approach:  

•  Exploit quantum-mechanical nature of specific physical phenomena to provide advantages relative to classical 
computing. Whereas N digital bits encode one N-bit state, N entangled quantum bits (qubits) can encode 2^N 
possible N-bit states states upon which operations can be simultaneously applied.  

Current & future promise:  
•  Theoretical quantum algorithms have been discovered for multiple scientific problems of interest to DOE. These 

range from problems in chemistry and physics, to data analysis and machine learning, and to fundamental 
mathematical operations. However, without the existence of suitable quantum computers, they cannot yet be 
exploited to accelerate time to scientific discovery.   

•  Prototypes of small quantum systems, be they specialized annealing devices, or even general purpose 
computers, are beginning to appear (D-Wave, IBM, etc.). 

Motivating applications:  
•  Quantum computing was originally conceived of as a way to use quantum mechanical phenomenon to solve 

problems in modeling other quantum mechanical properties of materials. The range of potential applications for 
which quantum computing offers advantages relative to classical computing has since expanded, including 
factoring composite integers (Shor), search (Grover), and optimization (quantum annealing).  

Timeframe: 
•  Quantum computing today is still itself an object of research, and not yet a tool that is ready to be applied for 

broader scientific discovery. Since the advent of Shor’s algorithm, there has been substantial investment in 
quantum computing worldwide, first by governments, and more recently, commercial interests. 

Key challenges: 
•  Development of quantum computing at larger scales where they will offer true computational advantage relative to 

classical machines. 
•  Development of programming approaches, and training in such approaches, to make use of quantum computing 

more broadly accessible. 
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Framework for assessing application 
readiness for adopting new architectures 

31 

•  Application: Scientific problem or subproblem with 
demand for extreme-scale computing. 

•  Potential: Evidence that one or more novel 
architectures could be suitable. 

•  Readiness: Suitability of current algorithms to novel 
architectures 

•  Novelty: Possibilities for new algorithmic approaches 
to addressing the same problem 

•  Demand: Urgency and demand for novel approaches 
•  Agility: Ability to quickly adapt to novel approaches 
•  Total ranking: The overall possibility that this is a 

driving application for one or more novel approaches.  
Will also feed into migrate vs. rewrite assessment. 
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Outline 

1. Our charge 
 
2. Post-Moore opportunities and challenges 

in Office of Science's mission 
 
3. Preliminary Recommendations  
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Preliminary Recommendations 
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Recommendation 1: The DOE Office of Science should play a 
leadership role in developing a post-Moore strategy/roadmap/
plan for Science on HPC, at both the national and international 
levels 
 
•  Focus on the needs of science applications (some may be 

synergistic with vendor priorities, and some may not) 
•  Raise public awareness of upcoming post-Moore challenges 

(as we did for exascale) 
•  Longer & different time horizons for different technologies 
•  Need for agile and adaptive methodology/planning 
•  Play a leadership role in national and international 

collaborations 
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Preliminary Recommendations (contd) 

34 

Recommendation 2: DOE should prepare to invest in preparing 
for readiness of science applications for post-Moore  
 
•  In partnership with other science programs (as in SciDAC programs) 
•  Assess applications that will be prepared and need to be prepared for 

post-Moore 
•  Which application areas are better positioned for post-Moore? 
•  What are next game-changers for Science?  What computation 

models do they need?  Which post-Moore technologies can have 
the biggest game-changer impact on a science domain?  New 
metrics, e.g., energy to knowledge? 

•  Workshops on post-Moore readiness, as was done for exascale 
readiness 
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Preliminary Recommendations (contd) 
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Recommendation 3: Identify and grow talent/staffing who can 
innovate in mapping applications onto emerging hardware 
(includes recognition of top talent in this regard) 
 
•  Also build pipeline e.g., CSGF is a foot in the door 
•  Encourage increase of named postdoc programs and 

LDRDs related to post-Moore 
•  Engage with interested & qualified faculty in academia 

through sabbaticals and other continuing engagements 
(e.g., joint faculty appointments) 



ASCAC	  

Preliminary Recommendations (contd) 
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Recommendation 4: Facilities should prepare users for early 
access to testbeds and small-scale systems 
 
•  Includes training, workshops, support 
•  Build relationships with new classes of system/chip/device 

vendors) 
•  Without distracting from exascale commitments! 
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Summary 

37 

•  Wide range of technologies for future high performance 
computing capabilities in different timeframes. 

•  Subcommittee is studying areas of research and emerging 
technologies that need to be given priority, but further 
investigation of technologies (requirements, workshops, 
etc.) will be needed beyond our study. 

•  Heterogeneity and hybridization are common themes in 
future HPC.  No single technology will be the answer. 

•  Applications will need to be agile in evaluating and adopting 
technologies that are most promising for their domain, as 
well as “migrate vs. rewrite” decisions. 

•  Office of Science should play a leadership role in developing 
a post-Moore strategy/roadmap/plan for Science on HPC, 
without distracting from exascale commitments. 

 


